
Exploring the direct rebound effects for
residential electricity demand in urban

environments: evidence from Nice
R&R, The Annals of Regional Science

Marco Baudino

43rd IAEE INTERNATIONAL CONFERENCE, Tokyo, Japan

August 3, 2022

Marco Baudino 1 / 18



Introduction

This paper investigates the direct rebound effect in residential electricity con-
sumption using district-level data for the French city of Nice for the year 2016.

Rebound effects in energy usage

Rebound effects in domestic energy consumption occur when
increased housing energy efficiency translating into a decrease
in the energy price does not lead to a decrease in residential
demand for energy usage.
Generally speaking, the literature distinguishes between indirect
and direct rebound effects. The latter are considered in this
study.
Direct rebound effects are usually driven by the basic principles
of microeconomic theory; namely, income and substitution ef-
fects.
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Classical framework

Figure: Direct rebound effect in residential electricity consumption.
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Subsequent developments

A more refined approach to compute the direct rebound effect takes into account energy effi-
ciency measures; defining the economic definition for energy efficiency (Wirl, 1997):

ϵ ≡ S/E (1)

where E is energy demand and S is an indicator for the efficiency of energy services, the direct
rebound effect writes as:

RE = ηϵ(E) = ηϵ(S) − 1 (2)

So that:

ηϵ(E) = −1 (ηϵ(S) = 0) → no rebound effect.
−1 < ηϵ(E) < 0 (ηϵ(S) > 0) → partial rebound effect.
ηϵ(S) = 1 → full rebound effect.
ηϵ(S) > 1 → backfire effect.
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Issue

The derivation of ϵ is usually a cumbersome task due to data availability (theoretically, one
would need information on all the energy factors impacting on household residential facilities,
such as indoor-outdoor air exchange, heating fluid distribution system, ...).

To overcome this problem, a large number of studies have simply utilized the price elasticity
(ηPE (E)) to derive an estimate for the direct rebound effect:

ηϵ(E) = −ηPE (E) − 1 (3)

Nevertheless, energy prices must not depend on energy efficiency; also, potential overestimation
effects might arise (Sorrell et al., 2009).

Recent contribution have proxied energy efficiency as the inverse of energy intensity (D):

ϵ = 1/D (4)

where D measures the average energy quantity of kWh consumed per square meter of residential
living surface (see Belaid et al., 2020).
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Rebound effects at the macro-level

Although a microeconomic phenomenon, an expanding strand of the literature
has been focused on more aggregated data at the macro-level (regional, national
and urban level (Balezentis, 2020; Shao et al. (2019); Zhang and Peng, 2017;
Orea et al., 2015)).

Relevance of employing urban-level data:

Environment-specific factors such as population density, congestion, etc.,
which are generally more pronounced in cities than in rural areas, have been
proven to influence households’ energy consumption behavior (Shao et al.,
2019; Orea et al., 2015).

Within urban environments, differences in terms of energetic performance
of districts and household consumption behavior often arise (Tian et al.,
2016, Tian et al., 2014).

Using urban/district level data allows to evaluate the effectiveness of urban
energy amelioration programs (Balezentis, 2020; Zhang and Peng, 2017).
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Data, Context and Research questions

Data
For this analysis we exploited two original data sources (from INSEE and ENEDIS)
by which we constructed a cross-sectional dataset of 146 observations.

Context
Nice is a medium-size city characterized by substantial variation in socio-economic
conditions of dwellers. Additionally, city authorities have financed the develop-
ment of a zero-energy district characterized by a high degree of energy efficiency;
contrariwise, other parts of the city lagged behind.

Research questions
⇒ Do districts characterized by higher levels of energy efficiency denote lower

rebound effects in household electricity consumption?

⇒ Do districts characterized by higher levels of income denote higher
rebound effects in household electricity consumption?
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Descriptive statistics

Table: Descriptive statistics.
Variable Description Mean/Frequency St. dev. Min. Max.
Residential electricity demand (MWh) 3.475 1.305 2.105 10.023
Electricity price (e/MWh) 165.420 6.514 149.532 180.396
Building efficiency (1/energy intensity) 0.0068 0.0031 0.0021 0.0151
Gas price (e/MWh) 77.908 9.597 59.526 109.410
Household net personal income (e) 22946.250 8865.847 7240.292 51238.060
Residential density (residents/m2) 0.0091 0.0069 0.0001 0.0306
Average house surface (m2) 62.061 7.739 11.357 82.775

Heating system Individual 71.97
Shared 28.03

Housing unit Apartment 90.74
House 9.26
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Descriptive statistics

Figure: Building efficiency and electricity price distribution maps.
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Empirical strategy

Model specification:

ln(Ei ) = β0 + β1ln(PEi ) + β2ln(ϵi ) + χi γ + ui (5)

Methodology:
OLS
SAR (spatial autoregressive model)
GWR-SAR (geographically weighted-regression with spatial autoregressive coefficient)

Recent contributions on individual energy behavior have demonstrated how in urban environ-
ments domestic electricity demand is likely to display both spatial autocorrelation (Tian et al.,
2016; Tian et al., 2014) and spatial nonstationarity (Mashhoodi and van Timmeren, 2018;
Akarsu, 2017).
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Empirical strategy (follows)

Spatial autocorrelation

Spatial dependence in household energy behavior can arise for different reasons; e.g., due to
socio-economic linkages characterizing proximate areas. Indeed, similar life-styles and household
characteristics, as well as continuous movements of people within a city that contribute to convey
information, are likely to generate and foster spatial correlation among electricity demand levels
(Gomez et al., 2013). Spatial dependence in domestic electricity demand has been detected in
different cities such as London, Shanghai and Beijing (see Tian et al., 2014).

Spatial nonstationarity

Within urban areas, different districts are characterized by heterogeneous socio-economic condi-
tions, and this reflects into heterogeneous responses in variations to the electricity price, whose
impact on residential electricity demand can hence vary geographically (Mashhoodi and van
Timmeren, 2018; Akarsu, 2017).
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Empirical results

Table: Results from global models.
(1) (2) (3) (4) (5) (6) (7)

electricity price -0.513** -0.522** -0.491** -0.490** -0.517** -0.521** -0.501***
(0.2894) (0.2953) (0.2942) (0.3113) (0.2776) (0.2773) (0.2730)

building efficiency -0.667*** -0.626*** -0.643*** -0.605** -0.632*** -0.642*** -0.661**
(0.2115) (0.2152) (0.2148) (0.2238) (0.2029) (0.2031) (0.1998)

residential density 0.046*** 0.047*** 0.051*** 0.064*** 0.044*** 0.044*** 0.044***
(0.0126) (0.0128) (0.0124) (0.0127) (0.0120) (0.0121) (0.0119)

gas price 0.224*** 0.248*** 0.253*** 0.275***
(0.0867) (0.0838) (0.0848) (0.0838)

household income 0.054* 0.030 0.053** 0.056* 0.058*
(0.0286) (0.0276) (0.0273) (0.0273) (0.0269)

house surface 0.219*** 0.261*** 0.262*** 0.027*** 0.216*** 0.217***
(0.0629) (0.0620) (0.0620) (0.0603) (0.0602) (0.0593)

shared heating 0.072*** 0.081*** 0.086*** 0.078*** 0.072*** 0.072*** 0.072***
(0.0112) (0.0107) (0.0098) (0.0102) (0.0106) (0.010) (0.0105)

apartment -0.580*** -0.600*** -0.602*** -0.627*** -0.577*** -0.575*** -0.552***
(0.0504) (0.0508) (0.0508) (0.0534) (0.0482) (0.0483) (0.0485)

ρ
0.189** 0.184** 0.195***
(0.0996) (0.0779) (0.1069)

W Inv. dist. Queen kNN-5

Adjusted R2 0.8503 0.8442 0.8439 0.8251 0.8529 0.8533 0.8507
Residual sum of squares 1.6332 1.7130 1.728382 1.9505
Log Likelihood 122.6039 122.3054 121.0849
AIC -221.65 -216.69 -216.3874 -201.7302 -223.2079 -222.6108 -220.1698

Note: all variables are expressed in natural logarithms. Levels of significance: *p<0.10, **p<0.05, and ***p<0.01. Standard
errors in parenthesis. Constant coefficient estimates omitted.
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Results from the GWR-SAR local model

Figure: Local estimates for Building efficiency and Electricity price.
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Summary of results

From the empirical results of our analysis:

We detect the emergence of heterogeneous partial direct rebound effects,
ranging from 39% to 80% for the electricity price, and from 20% to 60%
for energy efficiency measures.

Lower-income districts do not always denote lower magnitudes for the re-
bound effect compared to higher-income districts.

Higher-energy efficiency districts register on average higher magnitudes for
the rebound effects compared to lower-energy efficiency districts.

The highest significant rebound effects for energy efficiency are detected
in the districts of the Nice eco-valley, whose residential facilities are en-
dowed with the most efficient energy-saving technologies in the city of Nice.
Specifically, for these districts, we detect that only the 45% of energy saving
potential has been achieved from energy technological improvements.
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Conclusion and Policy recommendations

In the light of our findings, we provide a series of recommendations:

A policy shift from purely technically oriented efficiency programs towards
a mix of technological and behavioral change campaigns could represent a
valuable effective strategy.

This calls for the need of a better investigation for the exact reasons behind
rebounds in domestic electricity usage (energy invisibility issue, habitual
practices, individual carelessness for energy-saving technologies (Hargreaves
et al., 2010; Burges and Nye, 2018, Dorner, 2019)).

Energy optimization policies shall be designed by city authorities without
jeopardizing citizens’ welfare, notably in those districts characterized by
lower levels of income.
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Thank you
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