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Abstract

Some abatement technologies become cheaper over time due to spillover
effects from other sectors. In a climate cost-benefit analysis, this process
is “exogenous”, in the sense that it only depends on time. Other abate-
ment technologies become cheaper only if they are deployed on a large
scale. This “endogenous” process of learning by doing decreases abate-
ment costs as a function of cumulative abatement. We aim to shed light
on the differentiated impact of endogenous and exogenous learning on
the optimal mitigation path. This is particularly important in a time
when many models and scenarios are ignoring the dynamic characteris-
tic of learning by doing. We develop a cost-benefit integrated assessment
model which includes both types of learning dynamics as well as inertia.
Theoretically, endogenous learning leads to a supplementary term in the
optimality condition: the “learning gains”, whereas exogenous learning
only creates an incentive to postpone climate action. We show analyti-
cally and numerically that including endogenous and exogenous learning
steepens the abatement path. In a cost-benefit analysis, both types of
learning leads to lower peak warming. Moreover, endogenous learning
leads to negative emissions in the long run. Besides, the common practice
of modelling endogenous learning as an exogenous process underestimates
optimal abatement by 9% in 2050.
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1 Introduction
Defining optimal emissions trajectories is crucial to inform climate policy. Many
models have been developed to do so, and numerous scenarios have been pro-
duced. Most notoriously, Intergovernmental Panel on Climate Change (IPCC)
reports gather many trajectories coming from various modelling tools.

In the transition to the climate objectives, technological change (TC) plays
an important role. Gillingham et al. (2008) made a review on how TC is
included in models: it is either modelled exogenously or endogenously, and in
the latter case, this can be included through R&D investments, learning by
doing, and price-induced learning. Regarding learning-by-doing, Wright (1936)
was certainly the first to quantify technological learning: he found that unit
labour costs in the aircraft industry decreased with cumulative output. Our
analysis will use this way of including TC.

The learning dynamics and how they are modelled may have significant con-
sequences on the optimal path. As concluded by Grubb et al. (2020), dynamic
characteristics (including TC) “can have a radical impact on the optimal ap-
proach to tackling climate change”.

However, among the main widely used models and in the IPCC reports, many
do not include endogenous learning dynamics in their optimisation. Learning is
often only exogenously included. It is also the case in many bottom-up energy
models. Therefore, better understanding the effect of learning dynamics on the
optimal path will help one’s analysis of the scenarios produced by those models,
which disregard the incentive created by learning by doing for early abatement.
In our results section, we show that approximating endogenous learning by an
exogenous process as it is done in many models underestimates the optimal
carbon price and abatement (by 9% in 2050).

To do so, we consider a cost-benefit model where marginal abatement costs
depend on time directly (exogenous learning) or on cumulative abatement A (en-
dogenous learning), such that we can write the decrease of marginal abatement
costs over time as the sum of both processes.

dMAC(t, A)

dt
=

∂MAC

∂t︸ ︷︷ ︸
exogenous learning

+
∂MAC

∂A

dA

dt︸ ︷︷ ︸
endogenous learning

(1)

We calibrate our MAC to the climate scenarios database of IPCC and NGFS
(Network for Greening the Financial System) (Rogelj et al., 2018; Huppmann
et al., 2019; NGFS, 2021). This framework allows us to investigate the conse-
quences of learning on the optimal abatement path and to focus on the differ-
ences among the impact of endogenous, exogenous learning and the absence of
learning. This is highly relevant for 3 main reasons: learning dynamics mat-
ter when looking at the optimal path; many models do not include endogenous
learning; the question of the impact of endogenous (versus exogenous) learning
does not seem to be sorted out in the literature.

Theoretically, endogenous learning leads to a supplementary term in the op-
timality condition: the “learning gains”, whereas exogenous learning only creates
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an incentive to postpone climate action. However, compared to a model without
learning, including exogenous or endogenous learning steepens the abatement
path and leads to less emissions reduction in the short term, but thanks to
more efforts in the medium/long term, peak warming is lower. In order to iso-
late the exogenous learning effect, we compare the exogenous learning model
with a model where there is no learning, but identical marginal abatement costs
(by fitting a polynomial). We show that the exogenous learning dynamic has
no effect on the optimal trajectory. Following a similar approach, we isolate
the endogenous learning effect and show its significant impact on the optimal
trajectory (the endogenous dynamic leads to lower emissions throughout this
century).

The structure of the paper is as follow. Section 2 briefly presents the related
literature. Section 3 introduces the model and shows analytical results. Section
4 explains how we isolate the exogenous and endogenous effect on the optimal
path. Section 5 presents how we calibrated our model to the IPCC and NGFS
database. Section 6 provides numerical results. We analyse the central cases
related to the different types of learning dynamics and provide a sensitivity
analysis on the learning parameters as well as on the discount rate. Then, we
isolate the effects of endogenous and exogenous learning dynamics. Section 7
concludes and discusses the main findings.

2 Literature
Recently, Grubb et al. (2021) criticised optimising IAMs because many models
do not consider path dependency (inertia and learning dynamics). We actu-
ally base our paper on one of the models they criticised (Dietz and Venmans,
2019) and add path dependency via endogenous learning and inertia while still
developing a surprisingly simple model to assess optimal climate policy.

The most closely related paper to our work is certainly the one from Goul-
der and Mathai (2000), in the sense that we both look at the impact of induced
technological change on the optimal path and that they derive analytical and
numerical results to support their analysis. Goulder and Mathai (2000) con-
cluded that the effect of learning by doing on initial abatement is ambiguous
but that in most numerical simulations it rises. However, in our simulations,
we show that abatement is lower in the short term when including endogenous
learning, compared to a model without learning calibrated on IPCC and NGFS
data. Moreover, they concluded that the impact of learning by doing on the
timing of abatement is very slight but that the effect on cumulative abatement
can be large. We show that indeed the effect on cumulative emissions over time
is quite large, but that the optimal timing of emissions is significantly impacted
as well.

Next, Manne and Richels (2004) is one of the only studies looking specifi-
cally at the consequences of endogenous versus exogenous learning on the op-
timal path. They showed that “including learning-by-doing does not signifi-
cantly alter the conclusions of previous studies that treated technology cost as
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exogenous”. We show otherwise, that the difference between exogenous and
endogenous learning does significantly alter the conclusions on optimal path.

Popp (2004) focused on the same subject, but they included endogenous
technological change (in the DICE model) via investments in energy R&D. The
paper focused on the differences (in terms of welfare gains, emissions trajectory,
and temperature) between a scenario with endogenous R&D and a scenario with
only exogenous learning. To do so, Popp (2004) used its modified version of the
DICE model “ENTICE” and defined the exogenous case as having “base-case no
policy” energy R&D. He found out that the welfare gains (in the long term and
in total) can be quite important with endogenous learning but that the emissions
trajectories and the temperature are almost identical (their optimal temperature
is around 5 degrees in both cases). With our model and our parameters, we find
that learning does decrease the optimal temperature (which is way smaller in
our scenarios) and that the trajectories are not quite identical. However, we do
not include R&D explicitly in our model.

Some disadvantages of learning-by-doing (LbD) versus R&D have been high-
lighted by Gillingham et al. (2008). Firstly, the reduced-form nature of LbD
is a black-box where causality does not appear clearly. However, this simple
formulation of TC allows us in our analytical IAM to remain simple and “trans-
parent”. Secondly, there is a lack of empirical data, and it is not straightforward
to calibrate (note that this particular remark is also applicable to the R&D ap-
proach). In our analysis, the IPCC and NGFS database allows us to calibrate
the model on a wide pool of scenarios.

There is a literature focusing on optimal investment in R&D and its inter-
action with market structure. R&D is typically undersupplied by the market
because there are knowledge spillovers and the returns to R&D are not fully
appropriable to the company that develops the technology. As a result, optimal
policy involves both a carbon tax and subsidies (Acemoglu et al., 2012; Fischer
and Newell, 2008). Most of the emissions reduction are due to the carbon tax
and it is the most efficient single policy but combining the policies lower the cost
significantly (Fischer and Newell, 2008). However, as pointed out by Gerlagh et
al. (2009), it may be hard to target R&D subsidies correctly in the private sec-
tor, so a carbon tax (the second-best policy) could then be implemented (which
would be significantly higher than in a first-best scenario). In our cost-benefit
model, we do not model R&D directly, but our MAC can be understood as
the marginal abatement cost function in a context of optimal or plausible R&D
subsidies1.

1We do not model R&D explicitely or directly: we assume an exogenous R&D process
that leads to 2 different types of learning. Some R&D enable spillovers from the rest of the
economy. These potential spillovers depend on time and drive our exogenous learning. Other
R&D investments will develop technology that builds incrementally on knowledge that has
already accumulated within green sectors but could not have been developed elsewhere. This
R&D is one of the drivers of our endogenous learning. Our MAC equation (see Section 3) can
therefore be understood as the marginal abatement cost function in a context of optimal or
plausible R&D subsidies. More specifically, since we calibrate our model on existing bottom-
up models in the IPCC and NGFS database, we use the assumptions regarding R&D in these
studies (they do not mention the amount of R&D subsidies).
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3 Analytical results in a simple climate model
We start from the climate model in Dietz and Venmans (2019), and add exoge-
nous and endogenous learning. We also add inertia in Appendix.

Define abatement a = EBAU − E, with EBAU being constant business as
usual emissions, expressed as CO2 equivalents.

Define cumulative emissions S, with Ṡ = E = EBAU − a. Assume tem-
perature to be proportional to cumulative emissions T = ζS. We use ζ =
0.0006◦C/GtCO2eq considering that the IPCC (IPCC, 2021) estimates that an
emissions budget of 1000GtCO2 will lead to 0.73°C long term warming from
2020 onwards and assuming that for each tonne of CO2 emitted, there will be
on average 0.2 tonne of nonCO2 equivalent emitted

(
0.73◦C

1200GtCO2eq = 0.0006
)
.

Define cumulative abatement relative to cumulative abatement at time zero
as A(S, t) = A0+

∫ t
0
aτdτ

A0
= A0+S0+EBAU t−St

A0
. Therefore, total cumulative abate-

ment is A0A.
Assume the following linear marginal abatement cost function as a % of

consumption,

MAC% = ϕ(t)aA−χ. (2)

The decrease of parameter ϕ over time represents exogenous learning. The
factor A−χ represents learning by doing. It corresponds to a standard linear
log-log learning curve such that for every percentage increase in cumulative
abatement, the marginal abatement cost, expressed as a percentage of produc-
tion, decreases by χ%.

Exogenous labour-augmenting technology improves labour productivity, lead-
ing to a BAU consumption growth rate of rate g.

As in Dietz and Venmans (2019), we assume that capital is close to its steady
state, and that the effect of climate on the growth rate is constant, such that
the savings rate is constant. As a result, we will write the model in terms of
consumption, which is proportional to production.

Consider consumption per unit of effective labour, with population growing
at rate n and standardised at 1 at time zero c = C

e(n+g)t . Finally, assume that
climate damages are quadratic and proportional to consumption, leading to the
following expression for consumption per unit of effective labour

c = cBAU0
e(−

ϕt
2 a

2A−χ− γ2 ζ
2S2). (3)

Note that γ is the damage function coefficient.
We use a utility function with constant elasticity of marginal utility. The

welfare functional writes

max

∫ ∞
0

e−δt
(
C
ent

)(1−η)
1− η

dt (4)

Defining the abstract concept U (c (a, S, t)) = c1−η

1−η =
c1−ηBAU◦
1−η e(1−η)(−

ϕt
2 a

2A−χ− γ2 ζ
2S2)

and r = δ− n+ ηg (with δ being the utility discount rate and η the negative of
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the elasticity of marginal utility), we can rewrite the welfare functional as

max

∫ ∞
0

e−(r−g)tUdt (5)

Then, the current value Hamiltonian is

HCV = U − λS (EBAU − a) (6)

The first order conditions (FOC) are

−Ua = λS ⇔ U (1− η)
(
ϕtaA

−χ) = λS (7)

λ̇S = (r − g)λS + U (1− η)
(
−γζ2S − χϕt

2A0
a2A−χ−1

)
(8)

Note that the shadow price of cumulative emissions has now two components:
marginal damages and learning, both of the same sign. Avoiding a unit of
emissions does not only give lower damages over the future path, it also decreases
abatement costs of the future path. Let’s call this the “learning incentive”.

3.1 MAC path
Let’s define the marginal abatement cost expressed in units of consumption
MACt = −Ca = CtϕtaA

−χ = cte
gtϕtaA

−χ. We can integrate the equation 8

λS =

∫ ∞
t

e−(r−g)(τ−t)c1−ητ

(
γζ2S +

χϕτ
2A0

a2A−χ−1
)
dτ. (9)

Substitute lambda using equation 7 gives

c1−ηt

(
ϕtaA

−χ) = ∫ ∞
t

e−(r−g)(τ−t)c1−ητ

(
γζ2S +

χϕτ
2A0

a2A−χ−1
)
dτ (10)

Multiply by cηt egt,

MACt =

∫ ∞
t

e−r(τ−t)
(
cτ
ct

)−η cτγζ
2S︸ ︷︷ ︸

cS=marg damage

+
cτχϕτ
2A0

a2A−χ−1︸ ︷︷ ︸
cA=marg gain learning

 dτ

(11)

MAC% = ϕtaA
−χ

=

∫ ∞
t

e−(r−g)(τ−t)
(
cτ
ct

)1−η

 γζ2S︸ ︷︷ ︸
%marg damage

+
χϕt
2A0

a2A−χ−1︸ ︷︷ ︸
%marg gain learning

 dτ (12)
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Note that since c is consumption per unit of effective labour, the factor(
cτ
c0

)η
is approximately 1 (decreasing as a rate less than 0.02%). We obtain the

well known expression that at any point in time, the marginal abatement cost
should be equal to the social cost of carbon. However, the social cost of carbon
is not only the sum of all discounted marginal damages, it also includes the sum
of all future gains from endogenous learning.

In a model with exogenous learning, we obtain the following optimality con-
dition : MAC is equal to the present value of all future marginal damages, as in
a model without learning. In a model with endogenous learning the optimality
condition is: MAC equals the present value of all future damages plus marginal
learning gains from a unit of abatement today. For a given temperature, the
incentive to abate is larger (for a given temperature path, a marginal increase
in endogenous learning, will increase the MAC).

Substituting MAC = λS

U(1−η)ce
gt from equation 7 into equation 8 allows us

to obtain the growth rate of the MAC

˙MAC

MAC
= r̃ − γζ2S

ϕtaA−χ
− χa

2A0A
. (13)

Note that r̃ = r + ċ
c −

U̇
U is the standard Ramsey consumption discount

rate, resulting in the Hotelling rule. Next, applying cost-benefit, rather than
cost-effectiveness, results in the second term, which flattens the price path, as
shown in Dietz and Venmans (2019). The last term, which is the consequence
of endogenous learning, is also negative. Therefore, it also flattens the carbon
price path.

Thus, the growth rate of the social cost of carbon is unaffected by exogenous
learning and reduced by endogenous learning. Furthermore, consider a model
where learning is endogenous and compare it with a model that is identical,
with the same MAC function at each point in time, but learning is exogenous:
the carbon price and abatement will be higher at all points in time in the model
with endogenous learning.

In fact, consider equation 11 at the initial time; the endogenous model has
an extra positive term in the integral. By assumption, the factor ϕtA−χ is
the same for both models (identical MAC function at each point in time). As
a result, abatement is larger in the endogenous model. We will confirm this
numerically in Section 6.

3.2 Abatement path
Taking the derivative with respect to time of the marginal abatement cost (in
utils) expressed in equation 7 (note Ȧ = a/A0), we have

U (1− η)
(
ϕtȧA

−χ + ϕ̇taA
−χ − χϕta

2A−χ−1

A0

)
+ U̇ (1− η)

(
ϕtaA

−χ) = λ̇S

(14)
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The second term ϕ̇taA
−χ quantifies the reduction of the marginal abatement

cost due to exogenous learning. Similarly, the third term −χϕta
2A−χ−1

A0
is of the

same nature and has the same sign as the effect of the exogenous learning. Both
can be described as a “decreasing cost effect on abatement”. This effect tells us
that for a given carbon price, less abatement is obtained today compared to the
future, leading to a steeper abatement path.

Dividing by U(1− η) and using equation 8 gives us a formula for the growth
rate of abatement (the Euler equation).

ȧ

a
= r − g − U̇

U
− ϕ̇

ϕ
+

χa

A0A
− 1

2

χa

A0A
− γζ2S

ϕaA−χ
(15)

The first three terms correspond to the growth-adjusted discount rate. Next,
the positive term − ϕ̇ϕ represents the “decreasing cost effect on abatement” of
exogenous learning. It steepens the abatement trajectory, abate less at the start,
but more in the future for a given steady state temperature. The next term
+ χa
A0A

is the “decreasing cost effect on abatement” from endogenous learning,
which dominates the “early learning incentive” (− 1

2
χa
A0A

). Therefore, endogenous

learning also steepens the abatement path. The last term − γζ2S
ϕaA−χ represents

increasing marginal damage costs and is added in the case of cost-benefit analysis
and absent in cost-effectiveness analysis. It shows that taking the timing of
the damages into account creates an incentive for a flatter abatement path
(earlier abatement). The effect is larger in later periods when S approaches the
steady state. Learning magnifies this term by decreasing the denominator. Note
however that learning will also have an indirect effect on cumulative emissions.

Many bottom up models model endogenous learning as exogenous learn-
ing. In other words, they include the “decreasing cost effect on abatement” but
exclude the “early learning incentive”. They also disregard the timing of the
damages by doing a cost-effectiveness analysis. Equation 13 shows that both
approximations have the same effect on the growth rate of the abatement path:
the path is too steep (too little abatement in the short run).

4 Methodology to isolate the exogenous and en-
dogenous learning dynamics effects

In this section, we develop a model which allows us to isolate the dynamic effects
of learning. We make marginal abatement costs identical at each point in time,
such that the differences in the optimal emissions paths are only affected by the
dynamic incentives of learning.

4.1 Isolating the exogenous effect
We start with a model where there is only exogenous learning. The marginal
abatement cost, expressed as % of consumption is

MAC%(a, t) = aϕexo(t) (16)
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where ϕexo(t) is time dependent. Let’s the resulting optimal path be ˆMAC, Â, â.
Next, we fit a ninth-degree polynomial in abatement to the marginal abatement
cost of the exogenous learning curve.

The new marginal abatement cost, expressed as % of consumption is then

ˆMAC% =

(
9∑

n=0

ϕnolearnn ân

)
(17)

Note that we take the assumption that the first derivative of U with respect to
a is the same (see equation 26 in Appendix). If the optimal exogenous learning
abatement path were to be followed, this would give an abatement cost function
that is identical at any point in time. Hence, any deviation from the exogenous
learning path is only due to different incentive structure between no learning
and exogenous learning.

4.2 Isolating the endogenous effect
We start with a model where there is only endogenous learning. The marginal
abatement cost, expressed as % of consumption is

MAC%(a,A) = ϕendoA−χa (18)

where ϕendo is a constant. Let’s the resulting optimal path be ˆMAC, Â, â.
Next, we fit a twentieth-degree polynomial in time to the learning factor of the
optimal endogenous learning path ϕendoÂ−χt =

∑9
n=0 ϕ

exo
n tn. The new marginal

abatement cost, expressed as % of consumption is then

ˆMAC% =

(
9∑

n=0

ϕexon tn

)
â (19)

If the optimal endogenous learning abatement path were to be followed,
this would give an abatement cost function that is identical at any point in
time. Hence, any deviation is only due to different incentive structure between
endogenous and exogenous learning.

5 Calibration of our model
For the calibration, we use a slightly more complicated model, which has also
a speed penalty on abatement (see Appendix). We define v = ȧ and we use

C
CBAU0

= e(gt−
ϕt
2 a

2A−χ− θ22 v
2− γ2 ζ

2S2). Abatement a is defined as 60GtCO2eq −
Emissions. For exogenous learning we use the functional form ϕt = ϕ∞ +
(ϕ0 − ϕ∞) e−gϕt in the main analysis. We fit both the total abatement cost
and marginal abatement cost functions using maximum likelihood, giving equal
weight to both errors and assuming that they are normally distributed. Table
1 provide the parameter estimates for fitting both total abatement costs and
marginal abatement costs to the climate scenarios database of IPCC and NGFS.
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As to the other parameters (δ, n, η, g, ζ, γ), we used the values provided in
Table 2. To estimate the carbon price in our numerical simulations, we use the
following value for the world GDP of 2020: 84537 billions U.S. dollars (Interna-
tional Monetary Fund, 2021).

6 Results
For the numerical simulations, we solve the model which includes inertia2 (see
Appendix). The model, which consists of a system of 4 differential equations
in 4 variables (S, a, v, λS), is solved as a boundary value problem with MAT-
LAB’s bvp5c function. The boundary conditions are also presented in Appendix
(Equation 30).

The parameters estimates presented in Section 5 are used in our four central
cases: the exogenous, endogenous and two “No learning” cases. The endoge-
nous learning case uses the parameters of the “EndoLearn3” and the exogenous
learning case corresponds to “ExoLearn3” (see Table 1). In order to improve
comparability, a same value for θ2 is used in all cases as well as an identical
ϕ0 at the start, except for the first “No learning” case3. This particular case
corresponds to the “NoLearn2” fit and includes the fitted ϕ0 value. However,
the second “No learning2” scenario is a more traditional reference case which
has the same value for ϕ0 as the other cases.

Stemming from this significant difference in the starting ϕ0 values, the two
“no learning” cases differ tremendously, resulting in a temperature difference of
0.28 degrees at the end of the century (see Fig. 1). When the MAC curve is cal-
ibrated on current abatement costs and learning is ignored (as in No learning2),
the optimal carbon price is overestimated. As to the learning cases, the slope of
the MAC is higher in the endogenous case until 2090 but we see that emissions
on the other hand are always lower, which result in a slightly lower temperature
at the end of the century (compared to the exogenous case). Thus, the incentive
stemming from learning-by-doing (which is absent in the exogenous formulation)
leads to more efforts and a lower temperature increase. The difference is not
huge but still noticeable. We will isolate the effect of the endogenous learning
dynamic more accurately later in this section.

A sensitivity analysis is performed over the learning parameters (χ,A0, gϕ, ϕ∞).
The standard deviations from the fit are used as ranges for this analysis, except
for A0

4. We can conclude from Fig. 2 that there is less abatement in the short
term when considering learning (exogenous or endogenous), compared to the
first No learning case (all the 18 learning cases of the sensitivity analysis have

2Note that we use Equation 29 to get the exact solution (not the approximation of Equation
30).

3The θ2 value used corresponds to the average of the fitted θ2 values of the endogenous
and exogenous cases (0.00176). The same approach applies to the common starting ϕ0 which
is also computed as the average of the fitted ϕ0 values of the endogenous and exogenous cases
(0.0000492).

4As to A0, the standard deviation is too large to be used as the range for the sensitivity
analysis. Therefore, we consider the following values: 0.5A0, A0, 1.5A0.
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Parameter Value Source
δ−n 0.011-0.005 Drupp et al. (2018); United Nations (2017)
η 1.35 Drupp et al. (2018)
g 0.02 By assumption
ζ 0.0006 Calculation on basis of IPCC (2021)(see Section 3)
γ 0.0154 By assumption

Table 2: Assumptions concerning the parameters values for the numerical sim-
ulations
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Figure 1: Central cases
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a lower abatement until 2050). After 2050, more and more learning scenarios
start to abate a greater amount of emissions than the No learning case. Our
conclusions from Section 3.2 are verified numerically: both endogenous and ex-
ogenous learning lead to a steeper abatement path. This is due to the fact that
both dynamics have a decreasing cost effect on abatement (in the equation 15 of
the growth rate of abatement (the Euler equation)). As to the endogenous case,
this decreasing cost effect on abatement dominates the early learning incentive.

Under most conditions (16 out of the 18 learning cases), the temperature
is higher in 2100 in the scenarios including learning (than in the “No learning”
case). Furthermore, note that, compared to the “No learning 2” case (which has
a higher slope of MAC then No learning), all the learning cases have always
a higher abatement (because of the “bad” calibration of this second reference
scenario on current costs instead of on future costs as in the first No learning
scenario).

In the long term (Fig. 2), we show that most of the learning cases (13/18
cases) lead to a lower peak warming, compared to No learning. The central
“No learning” cases reach 3.93 and 2.87 degrees in 2500 while the learning cases
are more ambitious, especially the endogenous cases (the central endogenous
learning case reach 2.34 degrees). Thus, compared to a model without learning,
including exogenous or endogenous learning steepens the abatement path and
leads to less emissions reduction in the short term, but thanks to more efforts
in the medium/long term, peak warming is lower. Moreover, slight negative
emissions occur in the endogenous case (from 2270).

Next, we wish to isolate the learning effect on the optimal trajectory. Firstly,
we compare the exogenous learning path with a model where there is no learning,
but identical marginal abatement costs, by fitting a polynomial (as explained
in Section 4). As shown in Fig. 3, there are no visible difference between the
2 paths, hence apparently the exogenous learning dynamic has no effect on the
optimal trajectory. In fact, the difference in emissions is only of 0.009 GtCO2
(0.04%) in 2050 for instance. Thus, we show that as long as the model is well
calibrated, including an exogenous learning feature which is dependent on time
does not change the results, compared to a model where the cost of abatement
depends only on the level of abatement.

Secondly, we isolate the endogenous learning dynamic effect. As explained
in more details in Section 4, we fit a polynomial which is dependent on time
to the learning factor of the optimal endogenous learning path and hence get a
model with exogenous learning (which we compare to the endogenous learning
case). As opposed to the previous exercise showing the absence of impact of the
exogenous learning dynamic, Fig. 4 shows the significant impact of the endoge-
nous learning dynamic on the optimal path. Including the endogenous learning
dynamic leads to less emissions through the whole period until 2100 and hence
less warming at the end of the century. For instance, there is a difference of 1.88
GtCO2 in 2050 (9.11%) and of 0.56 GtCO2 in 2100 (5.78%) while the tempera-
ture is 3.01% higher in the exogenous case in 2100 (2.184° compared to 2.118°).
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Figure 4: Endogenous learning versus exogenous learning: fitting a polynomial
in time to the learning factor of the optimal endogenous learning curve

Note that if we consider a lower discount rate5, the differences become more
significant: e.g. about a 20% emissions difference in 2050 and a temperature in
2100 of 1.667° in the endogenous case and of 1.746° in the exogenous case. This
finding indicates that models that do not include a proper endogenous learning
dynamic (which is the case of many IAMs and bottom-up energy models) un-
derestimate the optimal abatement throughout the century. As a consequence,
policy makers and modellers should keep in mind that trajectories coming from
models without endogenous learning might not be ambitious enough. In fact,
they do not consider the “learning gains” which come from the fact that reduc-
ing emissions leads to less costly abatement in the future. As to the carbon
price, it is always higher in the endogenous case in this century after 2020. We
have confirmed our analytical findings from Section 3.1 : the carbon price and
the abatement are higher in the endogenous case, compared to the exogenous
case, because of the supplementary term in the optimality condition (the social
cost of carbon is not only the sum of all discounted marginal damages, it also
includes the sum of all future gains from endogenous learning).

5We consider δ = 0.006 instead of δ = 0.011.
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7 Conclusion
Optimal emissions trajectories produced by integrated assessment and bottom-
up energy models are of essential need to inform policies. In this paper, we
sorted out the question of the differentiated impact of endogenous and exogenous
learning on the optimal path. It was highly relevant to do so given the facts
that learning dynamics matter when looking at the optimal path and that many
widely used models do not include endogenous learning.

Theoretically, endogenous learning modifies the optimality condition: the
social cost of carbon is not only the sum of all discounted marginal damages
anymore, it also includes the sum of all future gains from endogenous learning.
This leads to more abatement and a higher carbon price. Moreover, looking
at the equation of the growth rate of abatement (the Euler equation), we saw
that both exogenous and endogenous learning lead to a decreasing cost effect on
abatement. As to the endogenous case, this decreasing cost effect on abatement
dominates the early learning incentive. In fact, both learning dynamics lead
to a steeper abatement path. We confirmed those findings numerically in our
central cases. Furthermore, we found out that slight negative emissions occur
in the endogenous case (from 2270).

In order to provide a fair and accurate comparison of the different types of
learning, we first calibrated our model on the IPCC and NGFS database. Sec-
ond, we developed a methodology to isolate respectively the exogenous and the
endogenous effect thanks to a polynomial fit (which allow the models compared
to have exactly the same slope of MAC).

This last methodology leads to a more accurate comparison. Contrary to our
central cases, we compared models which have the same “costs” and only differ
in terms of learning incentives. Regarding the impact of exogenous learning
on the optimal trajectory, this methodology led to a different conclusion than
the one we explained before (i.e., a steeper path). We showed that as long as
the model is well calibrated, the isolated exogenous learning dynamic (which is
time dependent) has absolutely no effect on the optimal path, compared to a
model where the cost of abatement depends only on the level of abatement (and
not on time). We believe that this fact has not been highlighted before and is
of interest to modellers: as long as the cost calibration is accurate, including
exogenous learning does not impact the results.

On the contrary, the endogenous learning dynamic has a significant impact
on the optimal trajectory: it leads to less emissions throughout the entire period
until 2100 and hence less warming at the end of the century. Depending on the
discount rate, the impact on emissions in 2050 can be up to a 20% difference (9%
in our central case) between an endogenous model and an exogenous model with
exactly the same slope of MAC. As to the temperature in 2100, the endogenous
learning leads to a warming of 2.118° (1.667° with a low discount rate), which
is 3% (5%) lower than in the exogenous case. Thus, the common practice
of modelling endogenous learning as an exogenous process underestimates the
optimal abatement, leading to a higher warming at the end of the century. This
is a strong conclusion for policy makers and modellers: one should keep in mind
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that trajectories coming from models without endogenous learning might not
be ambitious enough.
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Appendix: model with inertia
Assume a penalty for abatement speed (as a % of GDP) of θ1v + θ2

2 v
2. It rep-

resents increasing repurposing/stranding assets costs, bottlenecks in fast green
R&D as well as macro-economic, labour market and financial adjustment costs.
Note that we set θ1 = 0 in our calibration.

The welfare functional writes

max

∫ ∞
0

e−(δ−n)t
c(1−η)

1− η
(20)
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max

∫ ∞
0

e−(δ−n+(η−1)g)t c
1−η
BAU0

1− η
e(1−η)(−

ϕt
2 a

2A−χ−θ1v− θ22 v
2− γ2 ζ

2S2) (21)

Define the abstract concept U =
c1−ηBAU◦
1−η e(1−η)(−

ϕt
2 a

2A−χ−θ1v− θ22 v
2− γ2 ζ

2S2)

and r = δ − n+ ηg
The current value Hamiltonian (with sign switch to obtain a positive shadow

value) is
HCV = U − λS (EBAU − a) + λav (22)

The FOC are
−Uv = λa (23)

λ̇S = (r − g)λS + US (24)

λ̇a = (r − g)λa − Ua − λS (25)

With the 2 equations of motion, we have a system of 5 equations with 5
unknowns. In order to obtain a system of only 4 differential equations, we will
substitute equation 23 in 25.

Derivatives that will be useful:

US = U (1− η)
(
−γζ2S − χϕt

2A0
a2A−χ−1

)
Ua = U (1− η)

(
−ϕtaA−χ

)
(26)

Uv = U (1− η) (−θ1 − θ2v)

Time derivative of Uv(S, a, v, t) writes 6

−U̇v(S, a, v, t) = − (UvSE + Uvav + Uvv v̇ + Uvt)

= U (1− η) θ2v̇+ (27)

+ U (1− η)2 (θ1 + θ2v){(
−γζ2S − χϕt

2A0
a2A−χ−1

)
(EBAU − a) +

(
−ϕtaA−χ

)
v (28)

+ (−θ1 − θ2v) v̇ +
ϕt
2
a2A−χ

(
χEBAU
A0A

+ gϕ

)}

Inserting equations 23, 26 and 28 in equation 25, we obtain
6EBAU will cancel out, unless it changes over time. The 3 last lines are negligible, they

correspond to U̇(1− η)(θ1 + θ2v).
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v̇ =
1

θ2 − (1− η) (θ1 + θ2v)
2

{
(θ1 + θ2v) (r − g) + ϕaA−χ − λS

U (1− η)

− (1− η) (θ1 + θ2v)

[
−γζ2S (EBAU − a) + ϕaA−χ

(
χ

2A0A
a2 − v + 1

2
agϕ

)]}
(29)

For a very good approximate solution, write
−U̇v = U (1− η) θ2v̇ + U̇ (1− η) (θ1 + θ2v).
This results in

v̇ =
1

θ2

[(
(r − g)− U̇

U

)
(θ1 + θ2v) + ϕaA−χ − λS

(1− η)U

]
(30)

U̇
U = (1−η) ddt

(
−ϕt2 a

2A−χ − θ1v − θ2
2 v

2 − γ
2 ζ

2S2
)
is the effect of abatement

and climate damages on the growth rate. At the start, abatement reduces the
growth rate, whereas after a few decades, damages reduce the growth rate. The
effect is fairly constant (Dietz and Venmans, 2019), around 0.02%.

We now have a system of 4 differential equations in 4 variables S, a, v, λS ,
which can be solved as a boundary value problem using bvp5c in MATLAB.

The boundary conditions are

S(0) = S0

a(0) = a0 = EBAU − E0 (31)
a(∞) = EBAU

v(∞) = 0

We find the optimal price using

p =
λS

c−η
=

λS

U(1− η)
c ∼= c

[
ϕtaA

−χ + (r − g) (θ1 + θ2v)− θ2v̇
]

(32)

(omitting the term with U̇).
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